The pharmaceutical industry is a multibillion-dollar business that touches the lives of nearly everyone on earth in one way or another. In the United States alone, about four billion individual prescriptions are filled at pharmacies across the country each year. The California Biomedical Research Association estimates that 12 years of development goes into the creation of a single drug. Sharani Roy, assistant professor of chemistry, could impact that development process with her JDRD project.
Surface chemistry—specifically heterogeneous catalysis, the acceleration of a chemical reaction on the surface of a solid—has played a major role in pharmaceutical research for a number of years. Members of Roy’s JDRD team have focused their efforts on controlling the outcome of the reaction generated by heterogeneous catalysis, or catalytic selectivity.
“Two reactants come together. They react, and maybe there are two or three different possible products: A, B, and C. But how do you design a catalyst so that it makes A but not B and C? A lot of times you don’t want all the products. You’re looking for a particular one,” said Roy.
Roy’s team will study the process of catalytic selectivity by examining these surface reactions, which she hopes will lead to a better understanding of how to create and control that selectivity. The ability to direct this reaction could play a major role in advancing and expediting pharmaceutical research and drug creation. In the second phase of her project, Roy will study selectivity in a more realistic environment.
“In industry, when people are making a molecule in bulk, you don’t have these pristine surfaces that you make in the laboratory,” she said. “They are using what they have. They have high-pressure conditions and temperature conditions. Those are the real catalysts that are used every day. There’s a gap between that and these very model, ideal systems that we study in the laboratories.”
Roy’s ORNL partner, research scientist Benjamin Doughty, will provide her team with chemical images captured via the vibrational sum–frequency generation microscope he developed. The two hope their collaborative efforts result in a more complete understanding of interfacial molecular processes.